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Modeling Cyclic Melting and Refreczing

in a Hollow Metal Canister

D. G. Wilson, and R. E. Flanery

ABSTRACT

This r_port documents the mathematical model and computational algorithms used in a
pair of computer pro,grams that do energy redistribution calculations as part of a
comprehensive simlalation for thermal and structural analyses of one component of a
thermal energy storage system for the manned space station. The complete problem
includes cyclic melting and refreezing, fluid flow, and void formation and movement, as
wel] as conductive and convective heat transfer in a three dimensional setting. The
problem is posed in a hollow, metal canister filled with a high temperature phase change
material. The heat transfer equations discussed here consist of a pair of partial differential
equations for energy transfer (one linear the othez" mildly nonlinear), coupled with a
constitutive relation for energy and temperature. This constitu_s a weak, "enthalpy"
formulation of the phase change problem. The partial differential equations are
approximated by a system of coupled Crank Nicholson-type finite difference equations.
These nonlinear, implicit equations are solved for enthalpy (energy content) and
temperature fields sim1_Itaneously. A successive overrelaxation iteration scheme with
red/black ordering is used to solve the nonlinear difference equations. The algorithms have
been vectorized for rapid execution on the Cray X-MP supercomputer and techniques used
to do this are discussed.
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I. INTRODUCTION

It is intended that the manned space station satisfy a considerable portion of its power

requirements with solar energy. The station will orbit the earth in about ninety minutes

and spend about two thirds of each orbit in sunlight and about one third in the earth's

shadow. Under these conditions it will be necessary to store thermal energy during the

station's exposure to the sun and to retrieve it during the transit through the earth's

shadow. Several systems have been proposed for accomplishing this. In this report we

describe in rough outline one such system and in much more detail the mathematical and

computational model used in the heat flow portion of a simulation of its performance.

The system considered consists of a solar collector lined with small metal canisters

filled with a high temperature phase change material (PCM), lithium fluoride salt. The

canisters are small enough to fit comfortably in the palm of one's hand and there are more

than a hundred of them. A heat transfer fluid, an inert gas such as helium or neon,

circulates through pipes that pass through the metal canisters and carries heat away to

supply energy to turbines, generators, etc. The continual melting and refreezing of the

PCM distributes over time the delivery of the solar energy to the transfer fluid and hence

to the heat engines beyond. The motivation for using a PCM based thermal energy storage

system is that a properly sized such system can store and deliver energy over a narrow

temperature range near the melting point of the PCM thus avoiding temperature extremes.

A multitude of problems must be solved to design a satisfactory system. To list a few:

The size of the solar collector must be matched with the power requirements of the

station. The capacity of the energy storage system must be such that the PCM just about

completely melts during the insolation period and just about completely freezes during the

dark period. (Otherwise the advantage of the PCM is lost.) The canister material and its

design must be adequate to withstand the frequent meltings and freezings of the PCM, and

the resulting mechanical stresses, for many cycles.
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A computer simulation of the continual thermal energy redistribution in a

representative canister has been developed for the Advance_ Solar Dynamics Program

(ASDP) at NASA Lewis Research Center. Several modules, including two containing the

model and algorithms described here, make up a code named *NORVEX. m This code will

be used in support of a series of flight experiments proposed by ASDP to evaluate

components of the proposed system,

The complete mathematical problem consists of a system of coupled, mildly nonlinear,

partial differential equations for heat flow and fluid flow in a representative canister

coupled with a constitutive relation between energy and temperature and equations for

development and movement of a vapor filled void. There will be fluid flow in the liquid

PCM. even in a microgravity environment, because there is a significant difference in

density between solid and liquid PCM, The density change on melting and freezing causes

the formation of a vapor filled void on freezing and, of course, the disappearance of the

void on remelting. What is described in this document is only that part of the simulation

dealing with heat flow in the canister and the enclosed PCM. Except for the little said in

this introduction, the description of the fluid flow problem and its numerical solution and

the modeling of the void development and movement is left to other reports.

In brief the problem is as follows. A right circular cylindrical canister is filled with a

high temperature PCM. An enclosed cylindrical pipe runs down the center of the canister.

"r,_simulate the heat transfer fluid flowing in this pipe, and to model the flight experiments

pro,oosed by ASDP to evaluate system components, it has been assumed that a solid nickel

cylinder is encl_Jed by and attached to this inner pipe. Periodic flux boundary conditions

are su,pplied at the outer cylindrical surface of the canister and zero flux at its end faces.

Internal boundary conditions between canister and PCM. and between canister av,d

enclosed nickel cylinder, insure conservation of energy. (The enclosed nickel cylinder

radiates energy to the sky, at a flared end exterior to the canister, via radiative heat
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transfer: but descriptions of the simulation of heat transfer in this nickel cylinder and its

radiation to the sky are omitted from this report. These, and other aspects of the

simulation not described here. are documented in the final report.)

For this document, the fluid _elocities, void location and temperature field in the

enclosed nickel conductor are assumed to be known at each time step. These are computed

in separate modules of the complete simulation. Beyond the following three sentences,

these are not discussed in this document. In the fluid flow module, the movement of the

liquid PCM is modeled using a weak formulation of the incompressible Navier Stokes

equations. The phase transition region is treated as a porous medium that inhibits fluid

flow but also introduces the density change that acts as a sourco for the fluid flow. The

boundary conditions on the fluid flow problem are:. no slip m at the walls of the canister,

i. e. all velocity compollents are zero there, and conservation of mass and momentum at

the surface of the void.

Heat flow in the containing, metal canister is modeled using the partial differential

equation for conductive heat transfer in cylindrical polar coordinates. The boundary

conditions on the heat flow problem in the canister are: imposed flux on the outer

surfaces, and continuity of flux across the interfaces betw_n canister and PCM and

between canister and enclosed nickel cylinder. An "enthalpy formulation" that permits

easy treatment of the successive melting and freezing cycles is used to model the heat flow

in the PCM. In this formulation, the dependent variable in the partial differential equation

is enthalpy content instead of temperature, and a constitutive relation gives tsmperature as

a function of enthalpy. A convection term is included to account for the heat transfer

caused by bulk movement of the liquid. The boundary conditions on the heat flow

problem in the PCM are just that energy be conserved at the canister walls.

The complete system of coupled, mildly nonlinear, partial differential equations is

approximated by a system of coupled Crank Nicholson type finite difference equations.
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Implicit equations are solved for the enthalpy (energy content), temperature and velocity

fields simultaneously. A successive overrelaxation (SOR) iteration scheme with red/black

ordering is used to solve the difference equations in both the canister and the PCM.

In section 2 we present the analytic formulation of the heat transfer problems in the

canister and in the PCM. This iacludes the partial differential equation for heat flow in

the canister and the enthalpy formulation in the PCM including the constitutive relation

between enthalpy _d temperature. Cylindrical polar coordinates are used throughout. In

section 3 we present the discrete mesh. the control volumes used and the implicit

difference equations that approximate the partial differential equations. This section

includes descriptions of the computation of equivalent thermal conductivitiea between

dissimilar materials (canister. liquid PCM. solid PCM. etc.) and the "upwinding" scheme

used in the discrete convection terms. This scheme is nonstandard because the mesh used

is not unifor_ in the r and z coordinate directions. In section 4 we discuss the solution of

the discrete equations using SOR iterations with red/black ordering. The equations in the

canister are linear and the corresponding SOR scheme is standard except for the red/black

ordering. The equations in the PCM are nonlinear because the thermal conductivities in

solid and liquid differ and because the discrete, nonlinear, constitutive relation between

enthalpy and temperature must be satisfied simultaneously with the finite difference

equations. Thus the corresponding SOR scheme is nons_ndard. The idea for the implicit.

discrete form of an enthalpy formulation for a phase change problem is due to Elliot and

Ockendon. [1]. However. both its implementation in cylindrical polar coordinates and its

application to a problem involving convection are new. In section 5 we discuss strategies

used to vectorize the algorithms for fast execution on the Cray X-MP supercomputer.

Logical variables were used as mul_ipliers to avoid conditional branching in loops that

would prevent vectorization; multidimensional arrays were "unfolded* to increase the

average length of vectors, red/black ordering of nodes was used to avoid vector
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dependently; and "phantom" node points were inserted into arrays to handle boundary

conditions in the midsz of these long, unfolded vectors. Thw are applications and

extensions of ideas used in the numerical solution of S_an type problems in a three

dimensional, rect_mgular parallelepiped [3]. A paper documenting _e methods, for

application to more general filte difference schemes, is in preparation [2].

2. ANALYTIC FORMULATION OF THE HEAT TRAN$1_R PRO_

A. Heat Flow in the Canister.

The partial differential equation for heat conduction used to model the heat flow in the

containing canister is

= CA:V7 ). C1)
0¢

where p, ©, and k are the density, heat capacity and thermal conductivity of the canister

material respecti'vely, and 2' is the temperature. In cylindrical polar coordinaU_, this is

r Or r2 00 O*

for r, O, and z inside the canister. The canister is identified as the union of the four sets

LE (left end), RE (right end). IC (inside cylinder) and OC (outside cylinder) defined by

LE ={r,0.s IR_._ <r <R_v.0<O <2_r. Zt_<z <Zt}.

RE " { r . O. z I RL,uwr < r < R_,r . O < O < 2 vr . Zr__u_,v < s < Z,_ }.

IC "{r.O.s IR_ <R <Rt.0<O < 2_r.Z_# < _ < Zp_).

OC ,.{r.O.s I R_v-_., <r <R_., .O<O < 21r. Zu/_ < : < Z,_}.

where R_,v and R t denote the radii of the inner and outer walls of the inside cylinder of

the ¢amlmer respectively. R_n.v-_.v and R_.v denote the radii of the inner and outer

walls of the outside cylinder of the canister respectively. Zl./_ and Z t denote the axial

coordinates of the inner and outer walls of the outside disl_ of the canister at the left
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respectively, and Zr_t_-L_,r and Zr_ denote the axial coordinates of the inner and outer

walis of the outside disk of the canister at the right respectively.

Flux boundary conditions are imposed at three of the four exterior boundaries of the

canister. The end walls are insulated and the incoming energy flux on the outer cylindrical

ST- = 0 Pndwall is specified. ( = 0 at z -- Z_p. _)z at z s Zr_,

-kc_r aT- = _ (t) at r = _,r .) At the fourth exterior bounda_7. the inner surfacear

of the inner cylindrical wall. it is only required that the energy flux be continuous across

the interface between the canister and the enclosed nickel cylinder. (-k¢_ _ =_r

-k_,_ _T- at r = R_e, .) At the interior boundaries of the canister, where it contacts_r

the PCM. it is only required that the energy flux be continuous across the interface

between the canister and the _.nclosed PCM. -k_.r _T- = -kpcM aT+ at r = k_r _r I,

at- _ at- _
-- k_-_ ar at r- -R_r-_, and -'-_r-_- -- k_,_/ Oz at_r

z --Zt, and -k_ _T+_z-- -kpcM _z at z --Z,_8___tr.) Here k¢_, kn_._, and

kpc_ denote the thermal conductivities of canister, nickel, and PCM respectively, and the

superscripts on the partial derivatives of the temperature indicate limiting values from

above and below.

B. Energy Redistribution in the PCM.

An enthalpy formulation that permits _ treatment of the su¢c_ive ,uelting and

freezing cycles is used to model the heat flow in the PCM. A convection term in the

equations accounts for the heat transfer caused by movement of the liquid PCM. The

partial differential equation used to model the heat flow in the PCM is

= d_ ( _ V2") - d_v(_ • v ). (:3)

-7-
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where p is the density of the PCM. which is substantially different in the solid and liquid

phases. • k the specific enthalpy, k is the thermal conductivity of the PCM (also different

in solid and liquid phases). T is the temperature, and v is the velocity. The enthalpy

f,)rmulation consists of equation (3) coupled with the following constitutive relation

between p • and T.

T_, + (p • - pz_, H ) for PI_,_ H < p •.

2" : T._ for 0 _ p e _ Pz_ H. (4)

2",,_ + P• for pe < O,
p_ c_

where/'._ is the melt tsmperature of the PCM. Pt_._ and p._ are the densities of the

liquid and solid PCM respectively, c,_ and c_ a _ethe heat capacitiesof the liquid and

solid PCM r_pectively, and H is the htten_ heat of t_. solid liquid phase transition.

Interactions with the containing canister define the boundary conditions for both the

heat flow and fluid flow problems in the region occupied by the PCM. At these bound_ries

energy must be conserved, and so the energy flux must be continuous across the interface

between the canister and the PCM. The equations embodying this condition are given at

the end of the previous subsection. The velocity boundary conditio_ is that the liquid

PCM dora not slip at the boundary with the canister, that is, all components of th_

velocity are zero at the inner surfaces of the canister walls.

-8-
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3. FORMULATION OF DISCRETE EQUATIONS

A. DEfinitions of the discrete mesh and control volumes.

A finite mesh of r. 0 and z values is defined on the canister. The coordinate values are

rl, fori =0. I.'''.I, 0j,forj =0.1...,,],andzk,fork =0,1,...,K. For parity

reasons having to do with the red/black ordering. I, ], and _Y, the number of subdivisions

in the r, 0 and z coordinate directions respectively, are each required to be odd. With

R_,r. R_, Z,,_, and Zr_ as before, we have ro - R_r, rl - _r. Zo - Z_, and zx -

Zr_. Similarly 00., zero and 01 - 2¢r. We think of the canister, and also the enclosed

region filled with PCM. as being divided into small "control volumes" whose edges are

defined by the mesh lines. The mesh is not required to be uniform in the r and s

directions, and the mesh v,e use is not ,Jniform in these directions. We have assumed the

mesh to be uniform in the 0 direction. Thus 8 takes ]+1 equally spaced values from zero

to 2 _"inclusive and _ -- 2 _r/].

At the center of each con_-ol volume we identify a "node," and we index these node's

by the indices i, j, and k for i =0,1,....I-I, j -0, I,...,]-1, and

k -- 0. I. • • • ,K-1. The coordinates of the node Pl/t are (r_+1 + rl)/2, (0/+i + 0/)/2.

(zt+t + zt )/2. The distances in each coordinate direction between at, interior node. POt,

and its next nearest neighbors. P(l+t)jt. Pl(/+t)t, and PO(t+D. are ( rl +a -- ri )/ 2.

(Oj+a- Oj )(rj+l + ri)/4. (or. since the angular mesh is uniform. &0 (rl+t + r_)/2).

and (zt +a -- at )/2 respectively.

We think of discrete temperature, density and enthalpy variables. Ti/t. P0t and e_jt, as

being associated with the control volumes. We think of discrete velocity variables in each

coordinate direction, vrot, v00t and vzi_k as being associated with the underlying

partition that defines the interfaces between control volumes. Thus vr/_t is the discrete

approximation to the radial fluid flow velocity at time level n at r - rt.

0 = (0_+1 + 0_ )/2. z " (zk+t + zt )/2. (this is the center of the interface between cells

-9-
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numbered (i-l)jk and ijk); vO0, is the discrete approximation to tJ_eazimuthal fluid now

velocity at time leve! n at 0 = Oj. r = (rj+1 + rl )12. z = (:k,1 + zk )/2. (this is the

center of the inu_-face between ceils numbered i(j-l)k and ljk); and vso, is the discrete

approximation to the axial fluid flow velocity at time level n at z =&,.

0 = (0_+I + e_ )/2. r = (ri+1 + r_ )/2. (this is the center of the inU_face between cells

numbered ij(k-1) and ijk). Figure 1 shows a typical control volume and the locations of

the six velocity components into and out of this cell.

nods jh_ atLbe
oenUf of tin ljk _
coaUmlvolume

l _"ly.tOi

\

Figure 1. A typical control volume.

-10-
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B. Discrete Equations for Heat Flow in the Canister.

For simulating heat flow in th: canister, we have assumed that the walls of the canister

are only one control volume thick. The equations used are a Crank Nicholson like, finite

difference discretization of the partial differential equation (2). The equations are of the

form

"A_ =0 terms at On+l) +(1--O) terms at n , (5)

for ljk running through all the control volumes in the canister. Since we have assumed

that the walls of the canister are only one cell thick, these are: i = 0 and i = I--1 with

j = 0,1,... ,/'--1 and k --0,1,... ,K-1, for the inner and outer cylindrical walls

respectively; and k = 0 and k = A'--I with i = I, 2, .. •, I--2 and j = 0, 1, ... ,3'--I.

for the end walls respectively. The parameter e is a number between zero and one that

gives the implicitness of the difference scheme. @ is an input parameter, but we have

uniformly _ken it to be one half, resulting in a Crank N_cholson scheme. The terms in

the parentheses in equation (5) are difference quotients in the three coordinate directions

corresponding to the terms on the right of equation (2).

The difference quotients in the r direction at time level n are

(p¢)-X rj+x k (rl+a--rs) -- r_k (rt+x_rl_z) / Cr_+x rl+l--rl) [6)

where p, c, and k are the density, heat capacity and thermal conductivity of the canister

material respectively. The difference quotients in the 0 direction at time level n are

(0j+l-0j) -k (0j--Oj_l) - J r_ �¤�(7)

Since we have assumed that the grid is uniform in the O direction, all the 0 differences are

equal (_ = 2 Tr/Y). The difference quotients in the z direction at time level n are

[ T_ (.+,)--T,_. T_.-T_(._,) }/Cz.+I-.. ) C8)(pc)-I k (zi+2-- z, )/2 -- k (z,+l--_,-l)/2

-11-
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No single difference equation for a cell in the canister has all three of these terms. This

is because the wail of the canister are considered to be only one cell thick and thus every

cell is affected by one or more boundary conditions. Each cell in the canister interacts

with canister material at four of its six interfaces, but at the other two interfaces one of

the boundary conditions holds. Ceil in the ends of the canister have an insulated barrier

at the exterior face, ceil in the outer cylinder have a specified incoming flux at the exterior

face, and ceil in the inner cylinder have the nickel cylinder at the exterior face. All cells

in the canister, except those in the inner and outer rings of ceil at the ends, have PCM at

an interior face. The two inner and outer rings at the ends of the canister (four in all)

have :anister material at both interior interfaces and do not interact with the PCM.

Since cells in the left and right end wall have insulating boundaries to the left and

right respectively, the terms corresponding to {k T_° - T_(-') }and(zo-- z-x )/:2

{ T_z-T_(z-') }k ( zx +1 - mx-t ) / :2 are replaced by zero. For these same celL. except the innermost

and outermost rings that do not interact with the PCM. the terms corresponding to

k (za--Zo)/:2 and k (zx --zx-a)/:2 . where the canister contacts the PCM.

{ " } { T_ (x-s) - T_(z-,) }TJj_ - T_o and k O(z-l-_) (zx - zx-2)/2are replaced by ko(°+_) (z2-zo)/:2

respectively where now k O(o+_) and k q (x-1-_) are equivalent thermal conductivities

between PCM and cannister, and T_ s and T/_or-2) are temperatures in the PCM. We

defer for a moment explaining the computstlon of the equivalent thermal conductivity

between PCM and canister.

For ceil in the exterior cylindrical waiL. the terms corresponding to

{k 1(rn+s - rs-s )/2 are replaced by the negative of the incoming flux and. for all except

the first and last rings of ceil that do not interact with the PCM. the terms corresponding

-12-

1989006252-TSB04



2"_z-l)jk - 2"_z-2)jk }to k (r:+z_r:_l)l 2 . where the canister contacts the PCM. are replaced by

[ T,z-I)_,-T,z-z)_, }k (:_t_ _ )jr ( rt -- r!_2 )/2 . Here. as before, k (z-l- _)jk is an equivalent thermal

conductivity between PCM and cannister, and T_t-z)jk is a temperature in the PCM.

For cells in the interior cylindrical walls, the terms corresponding to

[ T'l" -- T_J' l where the cannister contacts the PCM (which again excludes the firstk( r , -- r o )/ 2 "

[ T_j,-T,j, }and last rings of cells), are replaced by k(°+_)Jk (r2 --ro)/2 ' where k(o+_)_ k is an

equivalent thermal conductivity between the PCM and the cannister, and T_jk is a

I T'j'-T'-t); }temperature in the PCM. and the terms corresponding to k (rl- r-t )/2 . are

{ TSt'-T'-I)_' ]replaced by k(o-_)jk (rl- r-x)/2 . where k(o-_)jk is an equivalent thermal

conductivity between cannister and the nickel core inside the central cylinder. T_-x)it is a

temperature in the outermost ring of cells of the nickel core and r-i is the radial

coordinate of the inside edge of this ring of cells in the core.

In the angular direction we have a periodic boundary condition. That is. the interface

at 0 -0 is identified with the the interface at 0 ffi2 _r. Thus. in the 0 direction, the

neighbors of the first cell in the j direction (j ffi O) are the secondcell and the last cell

and. similarly, the neighbors of the last cell in the j direction (j = ]-1) are the next to

last cell and the first cell. Thus. in the equations for cells with j -O. the entries in

equations (3) and (7) with subscripts j-1 are replaced with entries with subscripts J-1.

and similarly, in the equations for ceils with j - ]--I. the entries in equations (5) and

(7) with subscripts j +1 are replaced with entries with subscripts j ffiO.

Equivalent thermal conductivities between dissimilar materials are computed using an

equivalent thermal resistance model. An expression for the equivalent thermal

-13-
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conductivities can be d_ived by considering the thermal energy flow between two

juxtaposed slabs of dissimilar _teriais with different thicknesses. The condition to be

satisfied is that the flux of energy is continuous across the boundary between the slabs.

The equations are as follows.

T2 - T1 T_ - TI T_ - T_

--k.e(w2 /2= --kl (wl/2) = --k2 (w2/2) '

where Tv T_and T_ are the temperatures associated with the two slabs and with the

interface where they touch respectively, w s and w 2 are the widths of the slabs, k I and k 2

are the thermal conductivities of the materials that make up the slabs, and k.f is the

equivalent thermal conductivity between them. This gives two independent linear

equations in the two unknowns T_u and k ,_. Since the quantity T_ is of no particular

interest, we do not solve for it. The expression for the desired equiv:_lent thermal

conductivity is

klk2(wl +w2) (9)

This is the equation used to compute thermal conducttvities between canister and PCM,

between canister and the nickel core. and between different phases of PC_.

C, Discrete Equations for Energy Redi_ribution in the PCM,

The disctetization of the enthalpy equations° (3) and (4), is similar to that for equation

(2). However, since p, the material density and e. the specific enthalpy, vary together (it

is their product that o_curs in the governin S partial differential equations), we take this

product to be a single variable, denoted by *pe ._ h_ the following discussion, rope* is to be

interpreted as a multicharacter symbol for this variable, and pe_k is an approximation to

the }nt:gral average of its value over the ljkth cell at time n. This is an approximation to

the product p e, but densities and enthalpies are not computed separately.

-14-

1989006252-TSB06



As before, the discretization of the parZial differential equation, (3). takes the form

At

for ljk running through all the control volumes in the PCM, i = 1.2..-. ,/--2.

/ = 0,1,- • •, ]-1. and k = 1.2°" • •. X--2. (which includes those filled only with vapor,

i. e. void, and those located next to canister walls). The parameter 0 in equation (10) is

the same parameter that appears in equation ($), a number between zero and one that gives

the implicimess of the difference scheme. We have uniformly taken 0 to be one half.

which gives a Crank Nicholson scheme. In addition to this discrete version of the partial

differential equation, the following discrete version of the constitutive relation must be

satlglied.

Tm._ + ('°'"+'.ilk - Pt_ H ) for p:_ H < p e/_'z .

T_ I - Tj for 0 < pe[_ "z( PI_ H. (11)

2".. + Pe/)_'l for p ./_I < 0.

The terms that appear in the parentheses in equation (10) are differences of incoming

and outgoing fluxes in the three coordinate dirsctions for heat conduction and fluid flow.

These involve values of 2".p • and v, Because the PCM is completely surrounded by the

canimer, the externally imposed boundary conditions do not affect the equations in the

PC_. The form of the equations for cells in the PCM that are neighbors of cells in the

eanlster is the same u that for interior cells. The only differences are that the thermal

conductivity of the canister material is used in equation (9) to compute the appropriate

equivalent thermal conductivities between adjacent cells, and the temperatures of cells in

the canister are known. Because in the fluid flow terms we use _upwinding' and this

requires a separate discussion, we present first only the conductive heat transfer terms.
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The terms for conductive heat tranMer in the r direction at time level n are

rj+Ik_j,_)j,T_j+l)j_- T_ T_k--T_i-1)jk
(rl+a--r_) -- r8 k_,__)j_ (rl+t--r_-t)

(12)
(rl+l -I-r_ ) (r_+t --r, )

where k_l+_)jk and k_-_)jk are equivalent thermal conductivities between the cell

numbered ijk and its neighbors in the radial direction numbered (i+l)jk and (i-1)jk

respectively. These are computed using equation (9) where the dissimilar materials are the

contents of the adjacent cells at time level n (and thus the superscript) which may be any

two from among: canister material, liquid PCM, solid PCM, "mush" (partly liquid and

partly solid PCM), and void (whose thermal conductivity is taken to be zero).

A cell is mushy by definition if. for :hat cell. 0 < pe < PI_ H. where Pt_ is the

density of the liquid PCM. and H is the latent heat of the liquid/solid phase transition of

the PCM. The thermal conductivity of a mushy cell is computed as • linear combination

of the thermal conductivities of liquid and solid PCM in which the coefficients are the

fraction of liquid and solid present respectively. The liquid fraction is given by

kffipe/(p_H) when 0<pe <puncH. (k is zero when pe _0 and one when

pe _ P._w H.)

The terms for conductive heat transfer in the 0 direction at time level n are

kTo+_)_ (0/+ t_Ot ) - kT0-_)k (Oj - 0___) (t3)

(Oj+,_Oj ) l(r,+, +r, )/2 }z

where k 7(_+_)k and k 70-_ _ are equiwlent thermal conductiviti_ between the cell

numbered ljk and its neighbors in the azimuthal direction numbered i(/+l)k and iQ-1)k

r_p_tively. These equivalent thermal conductiviti¢_ are computed using equation (9) as

in the previous discussion, except that, because of the periodic boundary condition in the

azimuthal direction, here "canister" is not a possibillty for one of the dissimilar materials.

Again, since we have assumed that the grid is uniform in the 0 direction, all the 0
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differences are equal to 2 ir/J.

The terms for conductive heat transfer in the &direction at time level n are

i T[_(,+,)-T[_. T[_.--T[_(._,) }/(z.+,-- .. ) (14)k']'j(.+_) (zk+2 -_k )/2 -- kT.,(k-_) (_k+X--Zk-l)/2

where k 7j(k+_) and k _l(k-_) are equivalent thermal conductivities between the cell

numbered ijk and its neighbors in the axial direction numbered lj(k+l) end ij(k-1)

respectively. These equivalent thermal conductivities are computed using equation (9) as

explained in the discussion of the r difference quotients following equation (12).

The flux terms for fluid flow at the faces of the ijkth cell in the r. 0 and &directions at

time level n are of the form

r_+lpe_,+_):kvr_l+l)jk- ri pe_l.._)jkvr[_k
(r, €r, ) (r,.t + r, )/2 ' (15a)

pe['U+_)kvO['u+_ -pe?O-_)kvOt_,
AO (rl+l + r, )/2 ' (15b)

and

• (15c)
&k+z -- zk

respectively. Here yr, vO, and vz are the fluid velocities in the r, 0 and & directions

respectively, _ is the constant angule_, increment, 2 Tr/J, and the q¢_ntities with the half

intsgral subscripts are interpolated values of pe at the interlaces between adjacent cells.

The *no slip" boundary condition at the canister walls implies that all components of the

velocities are zero at the smallest and largest values of r and &. However. the discrete

velocities are a_mociated with locations in the centers of the faces of cells in the PCM. (See

figure I.) The discrete "no slip* boundary conditions are that all vr's are zero at the

largest and smallest values of i and all vz's are zero at the largest and smallest values of k.

(None of the v0 's are req/v_rwl to be zero.)

Two things contribute to the computation of the interpolated pe quantities. These are
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the nonuniformity of the grid and possible *upwinding." In the absence of upwinding, we

would take the linear interpolant. Peru+_ = _ Peru+t + ( l--iS )peru. where' _ is the ratio of

the distance from the cell interface to the ruth node to the total distance from the mth

node to the Cm+l)th node. Here. and for the next few paragraphs, we suppress the time

dependence and any distinction among coordinate directions and in place of multiple

indices for subscripts use only "m" to denote a single, generic, varying index.

Upwinding is a tactic of weighting the "upwind" quantity more heavily in the

computation of the coefficient of the velocity. Numerically this introduces dissipation that

tends to reduce the waves created by_.the hyperbolic character of this term in the

differential equation. A physically motivated justification is that the coefficient is partially

carried along by the velocity. The usual upwinding formula, for a uniform grid. is

Pem+4_Vm+l ----pem+l (Vm+1 --p_ I Vm _) Jr P#mCVm+l "!"p_ I vm+! I).

where _ G[0. 1] is the degree of upwinding. With tt = 1 we have full upwinding and

pem.p_ is either pem or peru+I depending on the sign of Vm �I.

A simple alternate formula combining upwhlding and unequal cell sizes, made up by

taking • weighted linear combination of the terms on the right of the previous formula.

would be

Peru+44Vm+l " [Jpem+lCvm+l -_ I Vm+l I)4" Cl-fJ)pe m Cvm+1 vm+l I).

But this hu serious shortcomings. In particular, if _ is not one half. it giv_ obviously

incorrect answers both when pen +1 - Peru.

Pem+_tVm+l : Pern+, {Vm+, + l_(1-- 2_) l Vm+l ' }.

and when # : 1.
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2_#evm+l. If vm+t > 0.

Pem+Wvm+l "
2(1-_)Pem+tvm+x. if vm+l < 0

The formula we use is

pe_+_vm+l = peru+, {_(1--/_)Vm+t +/_(vm+ 1 -- Iv_+, 1)/2 I (16)

+ pc. {(1--0)(1--/_)vm+,+/_(V.+,+ Ivm+tl)/2 }.

where/_ is the degreeof upwinding and _ is the ratio of the width of the ruth cell _o the

sum of the widths of the ruth and (m+l)th cell_ (Since nodes are located at centers of

cells, this defines the same _ as before.)

Writing this explicitly for %+t >0 and %+t <0. and rearranging slightly, gives

I_(1--/t)Pem+t+(1--O(1--/t))Pem ]Vm+l, lf,+,>O,
pe._._ vm+t --

which shows that for/_ and/3 in (0. 1) the coefficient of the velocity is always • convex

linear combination of the pe values •t the neighboring nodes. Thus P#m+_ is always

between Peru and Pem+l, and when these agree, pem+;t equals their common value. When

is one half, equation (16) gives the usual upwinding formula. When _t is zero, equation

(16) gives the linear interpolant for the coefficient of the velocity. When _t is one,

equation (16) gives full upwindin 8, and for any positive _t, upwinding persists even in the

limits as/3-*0 and/3-.1.

There is • considerable lore. but little theory, associated with • strategy for selecting •

"good" value for _. Even this lore is only applicable in one dimension. A general
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guideline is. "/_ > 0 is necessary but p as small as possible is good. mObviously _ should

depend on the velocity, but the form of this dependence is unknown. We made the value

of p an input parameter. In the absence of a reasonable selection criterion, we took its

value to be one half.

To succinctly state the several flux terms corresponding to fluid flow in equation (10).

we define a function whose evaluation formula is the right hand side of equation (16).

F(_._._5._.v) = _S{_(1-1,)v +/z(v-Iv l)/2 I (17)

+ ,l(1-_)(1-_)v +lzCv+lv I)/2 I .

Our intention is to substitute the degree of upwinding for _. and m substitute pe and

velocity values for _. _ and v respectively. To supply appropriate # values for this

function, we define parameters. #r, _"( r, -- r,_l )/(rt+1 -- r,_1 ). and

_&_ =(zk -- Zk-1)/ (_k +1-- Z_-1). #r and _z are ntios of distances in the r and &

directions respectively. We define #0 to be one half since we have umuned that the mesh

is uniform in the angular direction.

With these definitions, the terms of equations (lSa) - (I$¢) are as follows. The radial

terms are

r, +i F( _, _rj. Pe_i +|)jk, pej_, vr_ +I)_ ) - rl F ( _, #ri-1. Pe_k. pe_i-1)_k, vr_k ), (l$a)
(rt+1 -rl )(ri+1 + rl )/2

the angular terms are

_0 (rt+l + rt )/2

and the axial terms are

F( Iz.#zk .pe_(, +,) .peQ,. v&Q(_+l) ) - F( Iz.#_#_,.pe[_k.pe[_(,_,) .vzDk ). (18¢)
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4. SOLUTION OF THE DISCRETE F._UATIONS

A. Discrete Equations for Heat Flow in the Canister.

Since there is no phase change in the canister, and since for this computation the

discrete temperatures associated with nodes in the PCM and In the enclosed nickel core are

considered to be known, the discrete equations for heat flow In the eanLter are linear. An

SOR scheme with red/black ordering is used to solve this linear system. This forms the

inner iteration procedure for the canister module. Of course, the discrete temperat_Lres at

nodes In the PCM and In the enclosed nickel core must also be updated at each r_ve

time step, but this is done In separate inner iteration procedures accordIng to a complete.

outer iteration strategy. This outez iteration strategy involves the computations for the

complete problem including all heat flows, fluid flow and void update calculations and its

explanation is beyond the scope of this report.

The linear system to be solved is of the form

(i+cR,_+cR,_+co& +co,7_+cz,_+cz,_)r_;'

- c_,_r_,++_)j_- c_,_r_,+__)jj- co& r_,(t_+_ = z_,,, 09)

for ljk running through the indices of the cell in the canister; I _=0 and _ = l-1 with

j = 0,1,... ,]-1 and k = 0,1,....I£-1, for the inner and outer cylindrical wall

respectively; end k = 0 and k = K-1 with I = 1, 2, ... ,I--2 and j =J0, 1, .. •. J'--l,

for the end wall respectively. Here the CR's, CS"s, and CZ's are the coe._ciente of the

correspondin$ temperatures In equations (6). (7) and (8) respectively multiplied by 0 At.

The right hand side, Z_k, is the sum of 7'_k and (1- 0 )At times the terms from

equatio_ (6), (7) and (8) evaluated at the nth time level, plus, for the cell with

m ]-1, (1-0 )At times the known flux terms at the exterior cylindrical boundary

evaluated at the nth time level, plus 8 At times the known flux terms at the exterior
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cylindrical boundary evaluated at the (n+1)th time level. (Recall that, because of the

boundary conditions, some of the coe_icimta, CR, C0, and CZ, wlll be missing or zero, and

further that, for cells with _ = 0, the temperatures of neighbor cells in the nickel core,

= --1. are known.)

Since the number of cells in each end disk of the canister and in both the inner and

outer cylinders of the canister is odd, we can use the "natural ordering" to number the

entire list of cells so that each odd numbered cell has only even numbered cells for

neighbors and each even numbered cell has only odd numbered cells for neighbors. With

the cells numbered in this way we think of the odd numbered cells as "red" and the even

numbered cells as "black." Then any update with red/black orderin 8 consists of an update

of the dis_ete temperatures for red (odd numbered) cells followed by an update for the

black (even numbered) cells. The motivation for using the red/black ordering hi to make

these computations vectorize for fast execution on the Cny X-MP supercomputar.

The SOR iterate for each cell is a linear combination of the Gauss-Seidel update and the

previous iterate. The Gauss-Seidel update is computed and then a multiple of the

difference between the Gauas-Seidel update and the previous i_ate hi added to the

previous iterate. If we add a new superscript wp_ to the discrete _t_nperature variable and

us_ this to denote the iteration number, then the SOR tipdate can be written as

T_ '.'+' - T/_'.' +, ITG/_'t.'+t- 2"/_'., I'

where TG is the Gauss-Seidel update. The multiplier, co. is the overrelaxatlon parametar, a

number in (I, 2) for overrelaxation. This parameter is an input variable, so the user may

select it as he sees fit. As a result of numerical experimenta using the given data of the

problem, we settled on a value of 1.3 for _. The computation is performed for ljk running

through the indices of the cells in the canister first for the red nodes using old information

(from the previous iteration) at all the black nodes, and then for the black nodes using the

latest information at all the red nodes.
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The Oauss-Seidel update is computed from the following rearrangement of (19).

rGl)'1,p+I = (20)
+ co + cz,7 +cz,

where the superscript m is ,pw when red nodes are being updated and *p+l* when black

nodes are being updated. This iteration is continued until the difference between the

Gauss-Seidel update and the previous iterate is less than a specified tolerance.

The computation of Z_t. on the right of equation (19). requires evaluating all the

difference quotients at the nth time level that would give the result of an explicit update

of the enthalpies and temperatures. We take the result of this explicit update, with the

maximum stable, explicit, time step size (as computed at the previous time step), as the

zeroth iterate for _n +1• lit • The maximum stable, explicit, time step size is time dependent

since equivaleht thermal conductivities between canister and PCM change as the PCM

melts and refreezes. It is determined dynamically while the coefficients that $o into the

terms of Z/_t are being computed. However. since this determination is not completed

until after at least one iteration of the procedure, the maximum stable time step size lags

one time step.

B. Discrete Equ_tiofLs for Energy Redistribution in the PCM.

Since there is a phase change in the PCM. and since the thermophysical parameters of

the solid and liquid PCM differ, and since the discrete nonlinear constitutive relation.

equation (11). must be satisfied simultaneously with the difference equations, the discrete

equations for heat flow in the PCM are nonlinear..A modified SOR scheme with red/black

ordering is used to solve this mildly nonlinear system. This forms the inner iteration for

the PCM module. For this computation, the discrete temperatures at nodes in the canister

and the velocities and void locations Are considered to be known.

-23-

1989006252-TSC01



The nonlinear system to be solved is similar to that represented by equation (19).

( 1+ c_l)t.z_ )pe_tI + c_ rl)t'

- cp._.tP ¼�„�e.f,**_)j,- cp._,_"  �Ø�p._.*__)j,- cpa0,_¢ ¤�Ô�p._._l_

for ljk running through the indices of the cells in the PCM. t _ 1,2... ,I--2,

j " 0.1. • •. ,]--1 and k -- 1,2. ' • • ,K-2. Here the CpeR's. CpeO's and CpeZ's are the

coe_cients of the corresponding pe's in equations (15), and hence (18), (with the

velocities evaluated at the (n+l)th time level but with the current iterate from the

separate flow update module), multiplied by 0 _t, and the coefficient Cpe_+_w _ is just the

sum of these. Similarly the CTg's. CT0's and CTZ's are the cce_cients of the

corresponding temperatures in equations (12), (13) and (14) respectively (with the

equivalent thermal conductivities evaluated at the (_+l)th time level but with the current

iterate, for the discrete temperature values, i. e. the pth iterate for the red nodes and the

(p+l)th iterate for the black nodes,) multiplied by 0 _t, and the coefficient CT/_'_ is

just the sum of these. The term on the right hand side of equation (21), Z/_, is the sum

of pe]_ and ( i- 0 )At times the difference quotients from equations (12) through (13)

evaluated at the nth time level. (Here. because the boUndary conditions do not directly

affect the heat transfer problem in the PCM. none of the CT_, CT0, and CTZ coefficients

will be missing or zero, but for cells that abut the canister walls, discrete temperatures of

the neighboring cells in the canister are known. Furthermore. because of the discrete *no

slip" boundary conditions on the velocities at the canister walls, some of the coe/li¢iente,

CpeR's and CpeZ's but not CpeO 's. that involve these velocities, will be zero for cells

that abut the canister walls.)
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Sine6 the number of cells in the inner and outer cylinders of the canister is odd and

since the walls of the canister are only one cell thick, the number of cells in each cylinder

of PCM is als _ odd. We apply the same natural numbering to the cells in each cylinder of

PCM so that in each cylinder each odd numbered cell has only even numbered cells for

neighbors and each even numbered cell has only odd numbered cells for neighbors. Since

each cylinder is identically numbered, each cell has identically numbered cells as neighbors

in the next innermost and outermost cylinders.

The cylinders of PCM are naturally inOexed by the radial index "g." We think of this

cylinder index as defining a parity and use this to define the red/black ordering for the

complete array of cells in the PCM. In the odd numbered cylinders, we think of the odd

numbered cells as "red" and the even numbered cells as "black." While, in the even

numbered cylinders, we think of the even numbered cells as *red" and the odd numbered

cells as "black." With this assignment each red cell in the entire array has only black cells

for neighbors and each black cell in the entire array has only red cells for neighbors.

Then, as before, any update with red/black ordering consists of an update of the p# and

temperature variables for the red cells followed by their update for the black cells. Again.

the motivation for using the red/black ordering is to make the computations vect_rize for

the Cray X-MP.

To avoid oscillations about the melt temperature in the iterative solution of the mildly

nonlinear implicit equations. Elliot and Ockendon, [1]. recommended taking the Gauss-

Seidel update as the new iterate for the temperature if t_e previous iterate and the Gauss-

Seidel update are on opposite sides of the melt temperature but using an SOR iteration if

the previous iterate and the Gauss-Seidel update are on the same side of the melt

temperature. They were analyzing a finite element scheme instead of a finite difference

scheme, but the motivation for making this decision is independent of that distinction. We

have taken their advice and selectively applied the SOR scheme in the computation of the
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discrete temperature in each cell. We defer momentarily discussing this selective

application. After the new iterate for the temperature has been determined, the pe

variable at the advanced time step is computed using this temperature in a rearranged and

slightly reorganized Version of equation (21).

As usual, the SOR iterate for the discrete temperature in each cell in the PCM is a line_

combination of the Oauss-Seidel update and the previous iun'ate. The Oauss-Seidel update

is computed by solving equations (11) and (21) simultaneously. A unique solution of

these equations exists, and is easily computed, since the temperature is a nondecreasing

function of the enthalpy. This computation a_ecls the evaluation of the Oauss-Seidel

update, but it does not change the SOR scheme. If the SOR iterate is to be used, then a

multiple of the difference between the Oauss-Seidel update and the previous iun-ate is

added to the previous iterate. This multiplier is the overrelaxation parameter, ¢_. ELliot

and Ockendon. [I], give a rather complicated suggestion for determining a good value for

the overrelaxation parameter ¢o. We have not taken their sugge_ion, but used the same

value input for the canister module. 1.3. The SOR update is computed from

r_ I'' H�=,,s_ + _ n_wherJ', TG is the Gauss-Seidel update, for ijk running through all the nodes of the PCM,

finn for the red nodes using old information (from the previous iteration) at all the black

nodes, and then for the black nodes using the la_ information at all the red nodes.

The Oauss-Seldel update is computed from the simultaneous solution of equations (II)

and (21) as follows. We rearrange equation (21) so that only the two terms involving

pe_ i and T_ "I are on the left, add and subtract appropriate ter_s involving 7'm,_ and

rewrite the resulting equation in a form suitable for iterative solution as

(1 + A )pe,_ _'' �|�+B(r/)__,, T.._ ) - [ ]_C_T._ ,0), (22)

where "A" and "B a denote the negatives of the sums of the coefficients of pe_ 1 and T_ 1
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in the right hand side of equation (10) respectively (as identified in equations (12) - (18)).

"p" is the iteration counter, and [ ]/_m(T_, O) denotes the right hand side of equation

(10) w_h ,,,,,,+1 ^_,,+1• Ot and eJgqt rep_ by Tn_ and zero respec_vdy t/wouglwut, and the

superscript "m" indicates that the ruth (where m is "p" ff the ljkth node is a red node and

"p+l" ff it is a black node) iterate value is to be used for pe s +z and T s +t with subscripts

other than "ljk." Although the coefficients A and B do depend on node location and time

level, for economy of notation, we have omitted their subscripts and superscripts, (which

would include era" as well as *n°). The computation of the equivalent thermal

conductivitiss is done as discussed_after equation (21). Note that both of the coefficients A

and B are positive.

To solve equations (11) and (22) simultaneously, we consider the three, mutually

exclusive possibilities that the updated state of the ijkth cell is solid, liquid or mush. In

the first case: pe/_ "1.p+1_< 0. T/_ "1.e+1_< T_. equation (11) is

pe_".P+1_ p,,_rc,,_ (r_tl.P +1_ r,,,_) = O.
and the solution is

[ ]_,t"( r.., 0)T|n + lop �jt = T,_ +
(1 + A )p,,,_ c,,_ + B "

In the secondcase:Pttw_ H _< _+t.,,,+l .r,ape,_,, , T_, <_ equatiof_ (11) isz iJk

e_. 1P ,j,_ - Pt_,,,,ct_ (T_ TM+1_ T,,..t,): Pt_,_H.

and the solution is

2"_ 1., t�H�=r.._ + []_m(r_'°)-C +A)H
(l+A)pt_cl_._ +a '

In the third case. 0 < pe_ 1.#+1 < Pt_,,_ H. and T_ 1.e+1 - Tm_ is the second condition.

:_= equation (11), and the solution also.

The quantity [ ]_tm( T_. 0) determines the choice from among the three possibilities.

If [ ]/_tm(Tm_ .0)_ 0. then the first alternative is selected and T/_l.e+l _ Tmu. If
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(1+A)pt_t_H_[][_m(T,,,.u.O), then the second alternative is selected and

Tm,_ _ rD_ 1"p+l. Finally. if 0 < []/_i_(Tm._,0) < (1 + A )Pt_ H, then the third

alternative is selected, and ._"_+I0_.p+s - Z'm,_•

The computational strategy is as follows. First [ ]/_tm(Tm.e .0) is evaluated and then

used to compute the corresponding Gauss-Seidel update for the temperature as one of th-.

three alternatives just given. To avoid oscillations about the melt temperature, SOR is

selectively applied at each node as follows. If the previous iterate and the Gauss-Seidel

update are on the same side of the melt temperature, then SOR is used: but if the previous

iterate and the Gauss-Seidel update are not on the same side of the melt temperature or if

either of these is exactly the melt temperature, then the Gauss-Seidel update is taken as

the new iterate. After the new value for the temperature has been determined, the new

value for pe is computed using equation (22) rearranged in the form

= {[]t3_'Cr._.o) - n (r_3_'., �L�¤�r._)]/(1 + A). (23)pcD_-l,e +l

This insures that the updated temperatures and enthalpies are self congistent. This

iteration is continued until the difference between the Gaues-Seidel update and the

previous iterate is less than a specified tolerance.

As in the iteration for the determination of discrete temperatures in the canister, the

results of an explicit update, with the maximum stable step size (as computed at the

previous time step), are used as the zeroth iterates for pe_ t and Z'/_ I. This computation

is almost free since the determination of Z_k. on the right of equation (21), requires

evaluating all the needed difference quotients at the nth time level. Since thermal

conductivitles of cells in the PCM change as the PC'M melts and refreezes, the maximum

stable explicit time step size is time dependent. It is determined dynamically while

computing the coefficients that go into the terms of Z0k. But, since its determination is not

completed until one step of the iteration has been completed, it does lag one time step.
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The experimentally determined maximum, economically feasible, implicit time step size

for the SOR scheme is about twenty times the maximum stable explicit time step size. At

this step size, convergence requires a!_-_utten to fifteen iterations and the implicit scheme is

cost effective. That is, since one iteration of the implicit scheme requires about u much

computation u one explicit update would, an implicit scheme that conwrges in fifteen

itentions with a time step size equal to twenty times the maximum explicit time step size

requires only •bout seventy five percent as much computation as an explicit scheme would.

The iteration will converge for larger time steps, but the number of iterations increases so

that the computation is not economical when compared with an explicit scheme. (This

brief analysis does not tell the whole story. When the transition from insolation to earth

shadow occurs, • significant transient is introduced and the number of iterations necessary

for convergence increases significantly. But in the midst of either of these periods with

constant incomin_ flux, the process is physically much more stable and the number of

iterations required for convergence drops dramatically. Thus on the aver•go the implicit

scheme is muchmore economical than an explicit one would be.)

5. VECTORIZATION FOR THE Cra¥ X-M]P

In the sense of documenting the algorithms implemented, the following scction.-is

complete. As a description of generally applicable techniques for vectorizing finite

difference schemes for numerical solution of partial differential equations, it is only an

introduction. Based on what wu learned from this effort, we have begun timing and

optimization studies on strategies for vectorizing such schemes. But that is another story.

Vector processors, such as the Cray family of supercomputers, excel •t performing

identical sequences of operations on long vector operands. Thus the strategy for

vec_orization is to arrange computations so that they consist of such sequences. Logical

tests within • loop could lead to different paths through the loop and hence to different

sequences of computations in the loop. Thus a loop containing such a logical branch will
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not vectorize. In addition, only the innermost in a set of nested loops will vectorize. Thus

nested loops should be avoided wherever conveniently possible. Finally, there is a certain

initialization cost associated with starting a vector computation, so it is pointless to

vectorize a computation for only a short vector and economically advantageous to

maximize the lengths of vector operands. A concerted effort has been made to vectorize

the computations just described for fast execution on the Cray X-MP.

One strategy used to avoid logical branches within a loop is to evaluate a logical

variable as a function of the condition to be tested (with values "I" for "true" and "0" for

"false') and use it as a multiplier to choose between two possible values (both of which

have been computed). For example, the following scrap of code

if ((tgausa.lt.tmelt .and. temp(i).It.tmelt).or.
# (tgauss.gt.tmelt .and. temp(i).gt.tmelt) ) then

temp(i) - teml_i) + omega * (tgauss - teml:_i))
else

temp(i) - tgauss
endif

that would implement successive overrelaxation if the Gauss-Seidel update for a new

temperature were on the same side of the melt temperature as the previous iterate but

would usa the Gausa-Seidel update directly if not, hu been replaced by code logically

equivalent to

tvalue - temp(i) * (tgauss - temp(i))
fvalue - tgauss
nt - one - (tgausa - tmelt) * (temp(i) - tmclt)
factor - max(1 _ t) - max(O,nt)
temp(i) - factor * tvalus + (one - factor) * fvalue

This code does the same computation with no logical test or branch. The integer "nt" is

less than one if the test is satisfied but greater than or equal to one if it is not. The

multiplier "factor" is the logical variable used to select the update value for the

temperature. "factor" is one if the test is satisfied (nt < I), and zero otherwise (nt _ I).

Both the values are computed, but only one is stored. This example shows the logic of
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what has been done. This idea has been used many times in the code with various degrees

of subtlety.

An integer Heaviside step function at one is very useful in defining appropriate logical

variables. "levi(k) - I + max(0_k) - max(hk); defines such a function with levi(k) - 1

for k _ I and levi(k) - 0 for k < I. In the sc_p of code shown above, I - levi(nO was

used to define the logical multiplier because the test should be failed if either of the

temperatures tested were exactly the melt temperature (which would result in the value

of "ntmbeing one).

Some logical decisions require that choices be made from among more than two

alternatives. In such cases logical variables have been combined to select the correct result.

For example, to label the cells of PCM as solid (I), mush (2), or liquid (3) the following.

nonvectorimble, code could have been used.

do 10 i - 1,lasti
do I0 k- l,lastk
do 10j= 0.j

if (rhoe(j,k,i).le.zero) then
Ibl(j.k.i)- 1

else

if (rhoe(j,k,i).ge.dlheat) then
Ibl(j,k,i)- 3

else

Ibl(j,k.i) - 2
endif

endif
I0 continue

Recall from equation (II) that a cell is liquid if/)e is greater than or equal to the product

PI_ H. solid if pe is less than or equal to zero, and mushy otherwise.

To make this code vectorizable, the if-then-else constructs can be replar_d with a single

equation involving three Boolean variables using the *levi" function defined above. The

following shows how this can be done and in addition how to treat the three dimensional

arrays. *rhoe" and "Ibl". as if they were one dimensional arrays, thus avoiding the nested

loop and simultaneously making longer vector operands.
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last - (lastj + 1) * lastk * lasti - I
do :0 j-0._

il = levi(int(one - rhoe(j,l,l)))
i3 - levi(int(one + rhoe(j,l.l) - dlheat))
i2 - (1 - il) * (1 - i3)
Ibl(j.l,1) - il + 2 * i2 + 3 * i3

10 continue

Here il. i2 and i3 are logical variables for "liquid," "mush. m and "solia w respectively, and

again the idea of setting the computed quantity equal to a sum of products of logical

variables multiplied with the corresponding values has been used. (This loop is offer_l for

demonstration purposes only. Because the computation is trivial, the vectoriz_d version of

this loop is slower, for reasonable sized vectors, than the scalar version. This is not true

for similar but more computationaUy intensive loops.)

The reader may object that a smart compiler, or at least a smart operating system.

would (or should) de_t that the loop index goes beyond its limits. But neither the cFr

compile on the Cray X-MP, nor the FORTRAN 77 compiler on our VAX have objected

(yet) to compiling or executing such code. Of course it is necessary to arrange loops

correctly so that it is the first index of the array that is used to run through the entries.

This is necessary because FORTRAN arrays are stored in memory so that the firm index

varies most rapidly.

Execution of a vectorized loop causes data to be pipelined through special hardware so

that multiple sets of the loop instructions (with different index values) are ex®cuted

slmulmneously. Thus. at any given instant while such a loop is being executed, there are

multiple values of the running index for which the indicated computations are being done.

This m_y create so called "vector dependencies" that prevent vectorlzation. The following

is an example of a loop that will not vectorlze because of these vector dependencies.

do 10 i .. 1,1max
F(i) - C1 * F(i) + C2 * F(i-l) + C3 * F(i C4 * F(i-idelt) + C$ * F(i+idelt)

I0 continu,e

The compiler will refuse to set up the vector pipelining for such a loop because for a given
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value of the running index, "im. the updated values of F(i-1) and F(i-idelt) that would be

used to compute F(i) if the loop were executed in scalar mode might be concurrently in the

vector pipeline and thus not available.

In the computation of the Gaues-Seidel updates for temperatures in both the canister

and the PCM, numerous loops of this form occur. Recall that "i" denotes the radial index,

"j" denotes the angular index, and "k" denotes the axial index. The nonvoctorizable form

of the main loop in the PCM update would be essentially as follows.

do 10 i- 2, imax-1
do 10 k - 2, kmax-1
do 10 j - 1. jmax

test - z(jok,i) + C1 * tmelt + C2 * (temp(j-l.k.i) + temp(j+l_k,i))
+ C3 * (temp(j.k-l,i)+ temp(j,k+l,i))+ C4 * (temp(j_k,i-1)+ temp(j_k,i+l))

if(test.le.O.O)tgauss= tmelt+ testI ( CI + csol)
if (0.0.1t.test.and.test.lt.dlheat) tgauss = tmelt
if (dlheat.le.test) tgauas - tmelt + ( test - dlheat ) / ( CI + cliq )
if ((tgaum.lt.tmelt .and. temp(j.k,i).lt.tmelt).or.

# (tgauss.gt.tmelt .and. temp(j,k,i).gt.tmelt) ) then
temp(j,k,i) - temp(j,k.i) + omega * (tgauss - temp(j_k,i))

else
temp(j,k,i) - tgauss

endif
10 continue

The variables "test" and "z" in this loop are [ ]/_m( Trade,0) and Z_k from equations (22)

and (21) respectively. (Numerous nasty details have been omitted here including pe

terms from equation (21), determination of the temperature dependent values of the

¢oeflioients. and the update of pe after the determination of the temperature. For this

explanation, we ignore these.) We have already shown how to avoid logical tests and

conditional branches (even with the three possibilities for the value of "test'). Now we

show how to circumvent the apparent vector dependencies.

The array in which temperature values are stored, temp(j,k.i), is din:ensioned as

"temp(O:jmax+l,l:kmax.1:imax)." The angular index wu n.ade the first index to make it

easier to implement the periodic boundary condition in the angular variable. A copy of

T(jmax_k.i) is stored in T(O.k,i) and similarly a copy of T(I .k.i) is stored in T(jmax+l.k.i)
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for each pair of indices "i" and *k." We refer to these duplicates as *phantom entries.*

Their values are updated, i. e. copied over. after each completed iteration.

These phantoms make necessary some additional computations, but they also make

possible treating each cylinder of the canister and PCM and each end disk of the canister as

• single vector. Whether the time spent on these additional computations is recovered by

being able to do • fast vector computation on a longer vector opsrand is • delicate question

that requires individual analysis. For this particular calculation the trade off appeared to

be marginally favorable, but cases for which it is not are easily constructed.

To remove the vector dependencies in such loops, wjmax mand mkmaxmwere required to

be odd and the loops were written in • form analogous to the following.

do 10 i = 2, imax- I
irb- irb + I

if (irb.eq.3) irb- 1
do 10 j - irb, (|max + 2)*kmaz - 2, 2

test = CI * tmelt + C2 * (temp(j-l.l,i) + temp(j+l.l.i))
# + C3 * (temp(j-jmax-2,1.i) + temp(j+jmax+2,1.i))
# + C4 * (temp(j,l,i-1) + temp(j.l.i+l))

,.o

10 continue

where for the first pass (when the red entries of the amy are updated) *irb' is initially

set to zero and for the second pass (when the black entries are updated) *irb j is initially

set to one. and the ellipsis indicates the omitted computations rearranged to •void

conditional branches as explained above. The vectorizing FORTRAN compiler still detects

the apparent vector dependencies and would refuse to vectorlze such • loop except that •

compiler directive has been used to force the vectorization. This is legitimate sinc_ it is

known that the required entries with lower numbered indices are of the opposite color.

They cannot be concurrently in the vector pipeline because they are not being updated.

Before and between the two passes through this nested loop. additional computation is

done to save the values of certain "real mred entries and to recompute certain phantom red

entries. This saving of some entries and recomputing of others is necessary because in the
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first pass the red phantoms are updated using values from the wrong neighbor locations.

The correct neighbor locations of the red phantoms are also red ent+'ies. Thus if their

values were not saved before the first execution of the nested loop, then the old values

would be unavailable to correctly update the red phantoms. These red phantoms should

be correctly updated so that the Gauss-Seidel update of all the black entries will be done

with updated information at all red entries. It is not necessary to correctly update the

black phantoms because after the black update, in which the phantoms are again updated

using values from the wrong neighbor locations, all the phantoms are reloaded with copies

of values computed at the corresponding "real" locations

Considerable effort was expended to make the algorithms explained here vectorize.

Logical tests and branches _,ere removed, apparent vector dependencies were eliminated or

circumvented, and computations were organized to increase the average length of the

vector operands. Nevertheless. because they were just too large, most of the loops did not

vectorize. There is a limit to the amount of computation that can be done in a vectorized

loop, and most of the loops in the canister and PCM modules exceeded this limit. It is

clear how to overcome this obstacle. The computations must be broken into smaller pieces

with intermediate results stored in long. temporary storage vectors. Lack of time and

money prevented our doing this.
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